COMUNE DI ALESSANDRIA

PROVINCIA DI ALESSANDRIA

Area in oggetto

IL PROGETTISTA:

PROPONENTI:

Dott. Arch. Sergio CAMILLI

Iscritto all'Albo ARCHITETTI P.P.C. n.485 Via Modena n.70 15121 - ALESSANDRIA

Ethos Engineering s.r.l. Via San Giacomo della Vittoria n.64 15121 - ALESSANDRIA

TITOLO DELL'OPERA:

Cooperativa Edilizia L'Oasi

Via Montebellina, 28 12051 - ALBA (CN)

Società Immobiliare Futuro di Martini Chiaffredo e C. s.a.s.

Via Montebellina, 28 12051 - ALBA (CN)

......

PIANO ESECUTIVO CONVENZIONATO

A - via del Castellino - località Valmadonna Area Ex Piano Integrato T3 del P.R.G.C.

OGGETTO DELLA TAVOLA:

RELAZIONE TECNICA DELLE RETI

TAVOLA N. SCALA DATA 10/07/2015
11 aggiornamento 29/04/2016

INDICE

2
2
3
3
15
15
15
17
e
18
19
29
32

1. RETE ACQUE NERE

Il progetto prevede il dimensionamento e la verifica della rete di fognatura acque nere relativa nell'ambito della realizzazione di due nuovi PEC in località Valmadonna nel Comune di Alessandria, indicati in seguito come "PEC Via Castellino" e "PEC via Costanza".

1.1. Calcolo della portata acque nere

Il dimensionamento della rete delle acque nere è condotto sulla base delle unità abitative previste. In particolare per il PEC "Via Castellino" sono previste 20 unità abitative mentre per il "PEC Via Costanza" sono previste 15 unità abitative. Si riporta, per ciascun PEC, una tabella riassuntiva con le portate previste.

PEC	UNITA' ABITATIVE	WC per villetta	Q _{tot} WC	lavabo per villetta	Q _{tot} lavabo	lavastoviglie per villetta	Q _{tot} lavastoviglie
		(n°)	(l/s)	(n°)	(l/s)	(n°)	(l/s)
VIA CASTELLINO	20	2	100	2	20	1	20
VIA COSTANZA	15	2	75	2	15	1	15

STRALCIO	lavello da cucina per villetta	Q _{tot} lavello da cucina	vasca per villetta	Q _{tot} vasca	bidet per villetta	Q _{tot} bidet
	(n°)	(l/s)	(n°)	(l/s)	(n°)	(l/s)
PEC VIA CASTELLINO PEC VIA COSTANZA	1	20 15	1	20 15	2 2	20 15

STRALCIO	lavatrice per villetta	Q _{tot} lavatrice	doccia per villetta	Q _{tot} doccia	Q_{tot}	\mathbf{Q}_r
	(n°)	(l/s)	(n°)	(l/s)	(l/s)	(l/s)
PEC VIA CASTELLINO	1	20	1	10	230	7.58
PEC VIA COSTANZA	1	15	1	7.5	172.5	6.57

Tabella 1: Calcolo portate acque nere

La portata di scarico delle singole utenze possono essere così schematizzate:

Tipologia utenza	Q scarico (l/s)
WC	2.5
Lavabo	0.5

Lavastoviglie	1.0
Lavello da cucina	1.0
Vasca	1.0
Bidet	0.5
Lavatrice	1.0
Doccia	0.5

Tabella 2: Portate singole utenze

La portata probabile Q_r (l/s) di scarico in uscita da ciascun edificio è data dalla seguente relazione:

$$Q_r = k_r * (Q_{tot})^{0.5}$$

dove:

- Q_t rappresenta la portata totale ottenuta moltiplicando lo scarico per il numero di utenze;
- K_r rappresenta il coefficiente di contemporaneità pari a 0.50 per case di abitazione.

1.2. Verifica idraulica della portata acque nere

In funzione delle caratteristiche idrauliche delle condotte utilizzate si calcola la velocità di deflusso ed il grado di riempimento della tubazione relative alla portata acque nere.

Affinché sia verificato l'autoespurgo delle condotte la velocità corrispondente alla Q_m deve essere > 0.5 m/s.

In caso contrario è necessario prevedere in testa alla condotta un sifone di cacciata al fine di agevolare la pulizia della condotta mediante un efficace lavaggio.

La rete delle acque nere è realizzata con tubazioni in PVC De 250 mm SN4 e presenta pendenza longitudinale minima di 0.30 %. In tutti i tratti si registrano velocità superiori a 0.50 m/s.

Pertanto non si prevede la posa di un pozzetto di cacciata tipo Contarino in testa alla rete.

1.3. Materiali usati e prescrizioni costruttive

La rete fognaria acque nere di entrambi i PEC verrà realizzata interamente con tubazioni in PVC De 250 mm SN 4 UNI EN 1401-1 che garantiscono ottime caratteristiche di tenuta idraulica.

La scelta di tubazioni in PVC, oltre a garantire un risparmio economico rispetto alle tradizionali tubazioni in grès, garantisce anche una maggior facilità di posa nelle trincee e basso coefficiente di scabrezza con una maggiore pulizia delle pareti.

Il profilo di posa della condotta presenta andamento altimetrico sostanzialmente conforme alla conformazione del piazzale previsto. Si prevede la posa di un pozzetto prefabbricato di ispezione di dimensioni interne 100 cm x 100 cm.

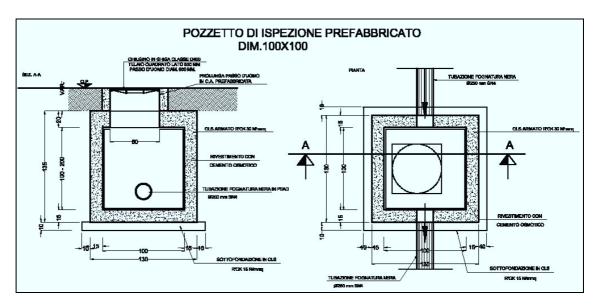


Figura 1 – pozzetto di ispezione

La condotta sarà posata entro una trincea stretta di larghezza minima pari a 50 cm e sarà totalmente rinfiancata con sabbia fine in modo da non danneggiare la superficie della tubazione. Il rinfianco con sabbia verrà eseguito fino ad una quota di 60 cm al di sopra del fondo dello scavo come indicato nella Figura 2 – sezione posa tubazione rete acque nere.

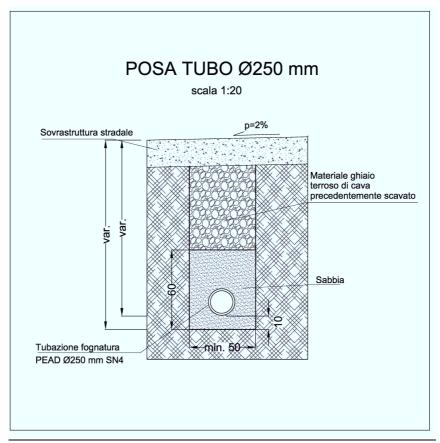
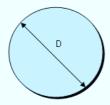
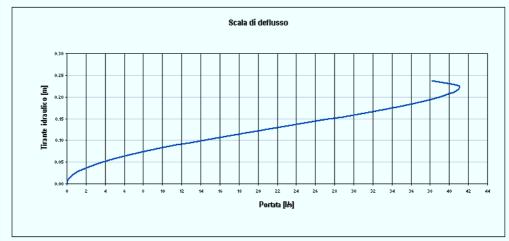
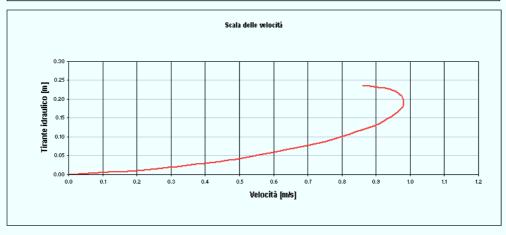


Figura 2 – sezione posa tubazione rete acque nere

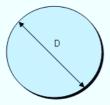

Le due reti oggetto della seguente progettazione convogliano le acque all'interno di una nuova rete di fognatura acque nere, in PVC De 400 mm, posata lungo via Costanza non compresa nelle opere a scomputo.

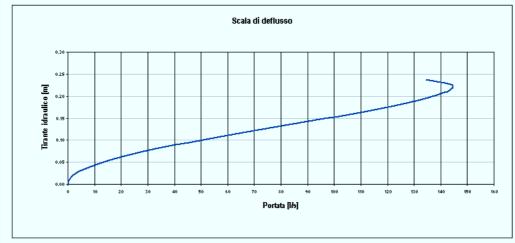
Lo scarico di questo nuovo tratto di fognatura nera De 400 mm avverrà all'interno della fognatura comunale esistente posata lungo via del Sabbione.


Si riportano le verifiche idrauliche delle nuove tubazione in progetto della fognatura nera. Come si nota si registra sempre una velocità superiore a 0.50 m/s ed un grado di riempimento sempre superiore a 13 %.


TUBAZIONE P1-P7 De250 - p min

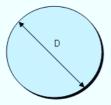
Portata Q (I/s)	7.58
Pendenza tubazione i _t	0.0050
Coefficiente di scabrezza ks (m1/8/s)	80
D tubazione (m)	0.2376
grado di riempimento y/D	0.30
velocità corrente v (m/s)	0.671

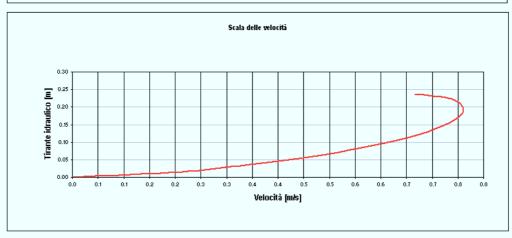

Grado di	Tirante	Area bagnata	Perimetro	Raggio	Velocità	Portata (IIs)
riempimento	(m)	(N1 ²)	baganto (m)	idraulico (m)	(m/s)	PULLALA (IIS)
0.000	0.00	0.000	0.000	0.000	0.000	0.000
0.05	0.01	0.001	0.107	800.0	0.221	0.183
0.10	0.02	0.002	0.153	0.015	0.345	0.797
0.15	0.04	0.004	0.189	0.022	0.445	1.856
0.20	0.05	0.006	0.220	0.029	0.530	3.344
0.25	0.06	0.009	0.249	0.035	0.603	5.231
0.30	0.07	0.011	0.275	0.041	0.668	7.478
0.35	80.0	0.014	0.301	0.046	0.726	10.040
0.40	0.10	0.017	0.325	0.051	0.777	12.868
0.45	0.11	0.019	0.349	0.055	0.822	15.905
0.50	0.12	0.022	0.373	0.059	0.861	19.092
0.55	0.13	0.025	0.397	0.063	0.895	22.365
0.60	0.14	0.028	0.421	0.066	0.924	25.654
0.65	0.15	0.031	0.446	0.068	0.947	28.883
0.70	0.17	0.033	0.471	0.070	0.964	31.969
0.75	0.18	0.036	0.498	0.072	0.976	34.819
0.80	0.19	0.038	0.526	0.072	0.982	37.324
0.85	0.20	0.040	0.557	0.072	0.980	39.346
0.90	0.21	0.042	0.594	0.071	0.968	40.696
0.95	0.23	0.044	0.639	0.068	0.943	41.029
1.00	0.24	0.044	0.746	0.059	0.861	38.184



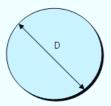
TUBAZIONE P1-P7 De250 - p max

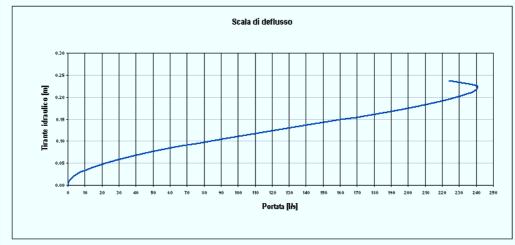
Portata Q (I/s)	7.58
Pendenza tubazione i _t	0.0620
Coefficiente di scabrezza ks (m118/s)	80
D tubazione (m)	0.2376
grado di riempimento y/D	0.16
velocità corrente v (m/s)	1.638

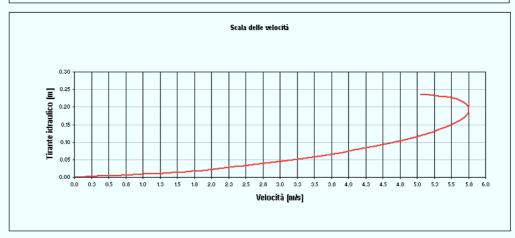

Grado di	Tirante	Area bagnata	Perimetro	Raggio	Velocità	Portata (l/s)
riempimento	(m)	(N1 ²)	baganto (m)	idraulico (m)	(m/s)	POITATA (IIS)
0.000	0.00	0.000	0.000	0.000	0.000	0.000
0.05	0.01	0.001	0.107	0.008	0.779	0.646
0.10	0.02	0.002	0.153	0.015	1.217	2.807
0.15	0.04	0.004	0.189	0.022	1.567	6.536
0.20	0.05	0.006	0.220	0.029	1.865	11.775
0.25	0.06	0.009	0.249	0.035	2.125	18.419
0.30	0.07	0.011	0.275	0.041	2.354	26.331
0.35	80.0	0.014	0.301	0.046	2.556	35.355
0.40	0.10	0.017	0.325	0.051	2.736	45.311
0.45	0.11	0.019	0.349	0.055	2.894	56,007
0.50	0.12	0.022	0.373	0.059	3.033	67.230
0.55	0.13	0.025	0.397	0.063	3.152	78.755
0.60	0.14	0.028	0.421	0.066	3.252	90.336
0.65	0.15	0.031	0.446	0.068	3.334	101.707
0.70	0.17	0.033	0.471	0.070	3.396	112.575
0.75	0.18	0.036	0.498	0.072	3.437	122.611
0.80	0.19	0.038	0.526	0.072	3.456	131.430
0.85	0.20	0.040	0.557	0.072	3.449	138,553
0.90	0.21	0.042	0.594	0.071	3.410	143.307
0.95	0.23	0.044	0.639	0.068	3.321	144.479
1.00	0.24	0.044	0.746	0.059	3.033	134.460


TUBAZIONE P7-P22 De250 - p min

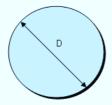
Portata Q (I/s)	13.25
Pendenza tubazione i _t	0.0030
Coefficiente di scabrezza ks (m118/s)	80
D tubazione (m)	0.2376
grado di riempimento y/D	0.47
velocità corrente v (m/s)	0.649

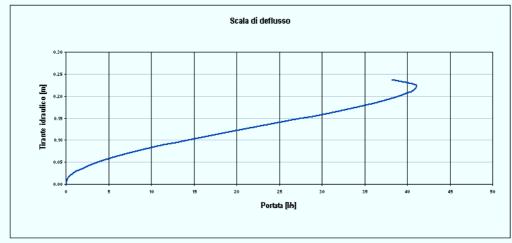

Grado di	Tirante	Area bagnata	Perimetro	Raggio	Velocità	Portata (l/s)
riempimento	(m)	(N1 ²)	baganto (m)	idraulico (m)	(m/s)	POICACA (IIS)
0.000	0.00	0.000	0.000	0.000	0.000	0.000
0.05	0.01	0.001	0.107	0.008	0.171	0.142
0.10	0.02	0.002	0.153	0.015	0.268	0.618
0.15	0.04	0.004	0.189	0.022	0.345	1.438
0.20	0.05	0.006	0.220	0.029	0.410	2.590
0.25	0.06	0.009	0.249	0.035	0.467	4.052
0.30	0.07	0.011	0.275	0.041	0.518	5.792
0.35	80.0	0.014	0.301	0.046	0.562	7.777
0.40	0.10	0.017	0.325	0.051	0.602	9.967
0.45	0.11	0.019	0.349	0.055	0.637	12.320
0.50	0.12	0.022	0.373	0.059	0.667	14.789
0.55	0.13	0.025	0.397	0.063	0.693	17.324
0.60	0.14	0.028	0.421	0.066	0.715	19.871
0.65	0.15	0.031	0.446	0.068	0.733	22.372
0.70	0.17	0.033	0.471	0.070	0.747	24.763
0.75	0.18	0.036	0.498	0.072	0.756	26.971
0.80	0.19	0.038	0.526	0.072	0.760	28.911
0.85	0.20	0.040	0.557	0.072	0.759	30.478
0.90	0.21	0.042	0.594	0.071	0.750	31.523
0.95	0.23	0.044	0.639	0.068	0.730	31.781
1.00	0.24	0.044	0.746	0.059	0.667	29.577

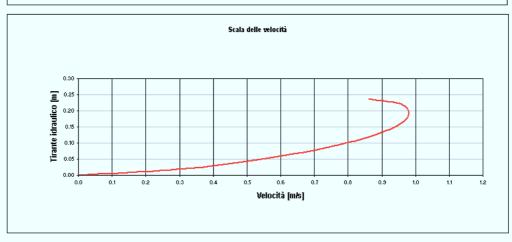



TUBAZIONE P7-P22 De250 - p max

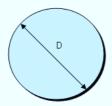
Portata Q (I/s)	13.25
Pendenza tubazione i _t	0.1720
Coefficiente di scabrezza ks (m118/s)	80
D tubazione (m)	0.2376
grado di riempimento y/D	0.17
velocità corrente v (m/s)	2.767

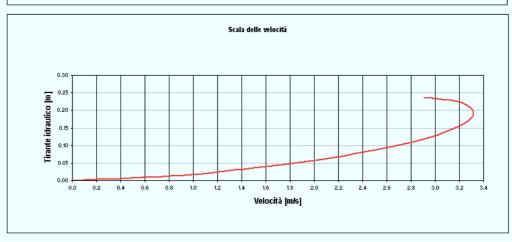

Grado di	Tirante	Area bagnata	Perimetro	Raggio	Velocità	Portata (l/s)
riempimento	(m)	(N1 ²)	baganto (m)	idraulico (m)	(m/s)	PULLALA (IIS)
0.000	0.00	0.000	0.000	0.000	0.000	0.000
0.05	0.01	0.001	0.107	0.008	1.298	1.075
0.10	0.02	0.002	0.153	0.015	2.026	4.676
0.15	0.04	0.004	0.189	0.022	2.610	10.886
0.20	0.05	0.006	0.220	0.029	3.107	19.612
0.25	0.06	0.009	0.249	0.035	3.539	30.678
0.30	0.07	0.011	0.275	0.041	3.920	43.857
0.35	80.0	0.014	0.301	0.046	4.258	58.887
0.40	0.10	0.017	0.325	0.051	4.557	75.470
0.45	0.11	0.019	0.349	0.055	4.821	93.284
0.50	0.12	0.022	0.373	0.059	5.051	111.978
0.55	0.13	0.025	0.397	0.063	5.250	131.173
0.60	0.14	0.028	0.421	0.066	5.417	150.462
0.65	0.15	0.031	0.446	0.068	5.553	169.402
0.70	0.17	0.033	0.471	0.070	5.656	187.504
0.75	0.18	0.036	0.498	0.072	5.725	204.220
0.80	0.19	0.038	0.526	0.072	5.757	218.909
0.85	0.20	0.040	0.557	0.072	5.745	230,773
0.90	0.21	0.042	0.594	0.071	5.679	238,691
0.95	0.23	0.044	0.639	0.068	5.531	240.643
1.00	0.24	0.044	0.746	0.059	5.051	223.955



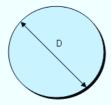

TUBAZIONE P8-P2 De250 - p min

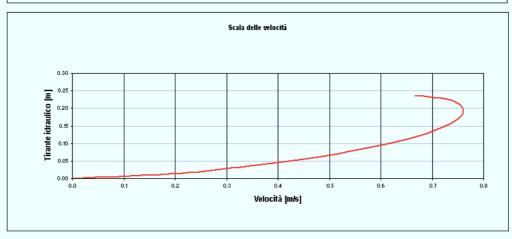
Portata Q (I/s)	4.80
Pendenza tubazione i _t	0.0050
Coefficiente di scabrezza ks (m118/s)	80
D tubazione (m)	0.2376
grado di riempimento y/D	0.24
velocità corrente v (m/s)	0.589


Grado di	Tirante	Area bagnata	Perimetro	Raggio	Velocità	Portata (1/s)
riempimento	(m)	(N1 ²)	baganto (m)	idraulico (m)	(m/s)	POICACA (IIS)
0.000	0.00	0.000	0.000	0.000	0.000	0.000
0.05	0.01	0.001	0.107	0.008	0.221	0.183
0.10	0.02	0.002	0.153	0.015	0.345	0.797
0.15	0.04	0.004	0.189	0.022	0.445	1.856
0.20	0.05	0.006	0.220	0.029	0.530	3.344
0.25	0.06	0.009	0.249	0.035	0.603	5.231
0.30	0.07	0.011	0.275	0.041	0.668	7.478
0.35	80.0	0.014	0.301	0.046	0.726	10.040
0.40	0.10	0.017	0.325	0.051	0.777	12.868
0.45	0.11	0.019	0.349	0.055	0.822	15.905
0.50	0.12	0.022	0.373	0.059	0.861	19.092
0.55	0.13	0.025	0.397	0.063	0.895	22,365
0.60	0.14	0.028	0.421	0.066	0.924	25.654
0.65	0.15	0.031	0.446	0.068	0.947	28.883
0.70	0.17	0.033	0.471	0.070	0.964	31.969
0.75	0.18	0.036	0.498	0.072	0.976	34.819
0.80	0.19	0.038	0.526	0.072	0.982	37.324
0.85	0.20	0.040	0.557	0.072	0.980	39.346
0.90	0.21	0.042	0.594	0.071	0.968	40.696
0.95	0.23	0.044	0.639	0.068	0.943	41.029
1.00	0.24	0.044	0.746	0.059	0.861	38.184

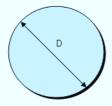

TUBAZIONE P8-P2 De250 - p max

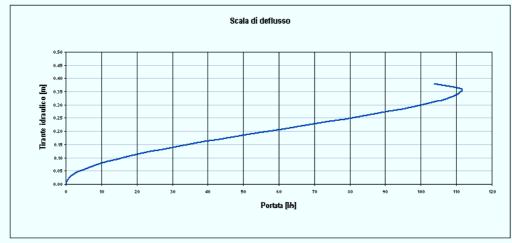
Portata Q (I/s)	4.80
Pendenza tubazione i _t	0.0570
Coefficiente di scabrezza ks (m118/s)	80
D tubazione (m)	0.2376
grado di riempimento y/D	0.13
velocità corrente v (m/s)	1.388

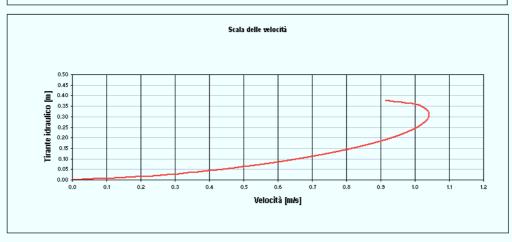

Grado di	Tirante	Area bagnata	Perimetro	Raggio	Velocità	Portata (l/s)
riempimento	(m)	(N1 ²)	baganto (m)	idraulico (m)	(m/s)	POICACA (IIS)
0.000	0.00	0.000	0.000	0.000	0.000	0.000
0.05	0.01	0.001	0.107	0.008	0.747	0.619
0.10	0.02	0.002	0.153	0.015	1.166	2.692
0.15	0.04	0.004	0.189	0.022	1.503	6.267
0.20	0.05	0.006	0.220	0.029	1.788	11.290
0.25	0.06	0.009	0.249	0.035	2.037	17.660
0.30	0.07	0.011	0.275	0.041	2.257	25.247
0.35	80.0	0.014	0.301	0.046	2.451	33.899
0.40	0.10	0.017	0.325	0.051	2.623	43.446
0.45	0.11	0.019	0.349	0.055	2.775	53.701
0.50	0.12	0.022	0.373	0.059	2.908	64.462
0.55	0.13	0.025	0.397	0.063	3.022	75.512
0.60	0.14	0.028	0.421	0.066	3.118	86,616
0.65	0.15	0.031	0.446	0.068	3.196	97.519
0.70	0.17	0.033	0.471	0.070	3.256	107.940
0.75	0.18	0.036	0.498	0.072	3.296	117.563
0.80	0.19	0.038	0.526	0.072	3.314	126,019
0.85	0.20	0.040	0.557	0.072	3.307	132.849
0.90	0.21	0.042	0.594	0.071	3.269	137.407
0.95	0.23	0.044	0.639	0.068	3.184	138.531
1.00	0.24	0.044	0.746	0.059	2.908	128.924


TUBAZIONE P11-P6 De250

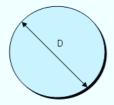
5.09	Portata Q (I/s)
0.0030	Pendenza tubazione i _t
80	Coefficiente di scabrezza ks (m118/s)
0.2376	D tubazione (m)
0.28	grado di riempimento y/D
0.501	velocità corrente v (m/s)

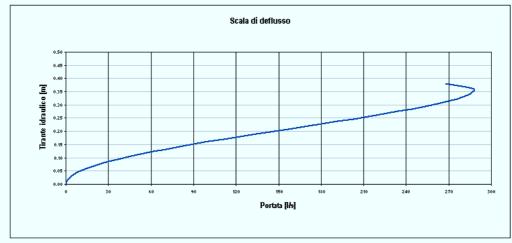

Grado di	Tirante	Area bagnata	Perimetro	Raggio	Velocità	Portata (1/s)
riempimento	(m)	(N1 ²)	baganto (m)	idraulico (m)	(m/s)	POICACA (IIS)
0.000	0.00	0.000	0.000	0.000	0.000	0.000
0.05	0.01	0.001	0.107	0.008	0.171	0.142
0.10	0.02	0.002	0.153	0.015	0.268	0.618
0.15	0.04	0.004	0.189	0.022	0.345	1.438
0.20	0.05	0.006	0.220	0.029	0.410	2.590
0.25	0.06	0.009	0.249	0.035	0.467	4.052
0.30	0.07	0.011	0.275	0.041	0.518	5.792
0.35	80.0	0.014	0.301	0.046	0.562	7.777
0.40	0.10	0.017	0.325	0.051	0.602	9.967
0.45	0.11	0.019	0.349	0.055	0.637	12.320
0.50	0.12	0.022	0.373	0.059	0.667	14.789
0.55	0.13	0.025	0.397	0.063	0.693	17.324
0.60	0.14	0.028	0.421	0.066	0.715	19.871
0.65	0.15	0.031	0.446	0.068	0.733	22.372
0.70	0.17	0.033	0.471	0.070	0.747	24.763
0.75	0.18	0.036	0.498	0.072	0.756	26.971
0.80	0.19	0.038	0.526	0.072	0.760	28.911
0.85	0.20	0.040	0.557	0.072	0.759	30.478
0.90	0.21	0.042	0.594	0.071	0.750	31.523
0.95	0.23	0.044	0.639	0.068	0.730	31.781
1.00	0.24	0.044	0.746	0.059	0.667	29.577

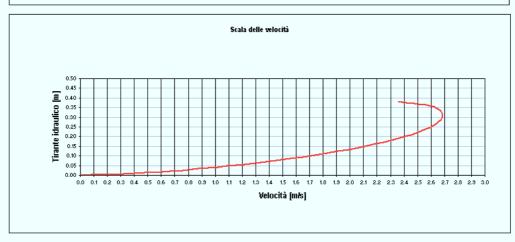



TUBAZIONE P22-P41 De400 - p min

Portata Q (I/s)	13.25
Pendenza tubazione i _t	0.0030
Coefficiente di scabrezza ks (m18/s)	80
D tubazione (m)	0.3804
grado di riempimento y/D	0.24
velocità corrente v (m/s)	0.627


Grado di	Tirante	Area bagnata	Perimetro	Raggio	Velocità	Portata (1/s)
riempimento	(m)	(N1 ²)	baganto (m)	idraulico (m)	(m/s)	PULLALA (IIS)
0.000	0.00	0.000	0.000	0.000	0.000	0.000
0.05	0.02	0.002	0.172	0.012	0.235	0.498
0.10	0.04	0.006	0.245	0.024	0.366	2.166
0.15	0.06	0.011	0.303	0.035	0.472	5.043
0.20	80.0	0.016	0.353	0.046	0.562	9.086
0.25	0.10	0.022	0.398	0.056	0.640	14.213
0.30	0.11	0.029	0.441	0.065	0.709	20.318
0.35	0.13	0.035	0.482	0.074	0.770	27.281
0.40	0.15	0.042	0.521	0.081	0.824	34.964
0.45	0.17	0.050	0.559	0.089	0.871	43.217
0.50	0.19	0.057	0.598	0.095	0.913	51.877
0.55	0.21	0.064	0.636	0.101	0.949	60.770
0.60	0.23	0.071	0.674	0.106	0.979	69.707
0.65	0.25	0.078	0.713	0.110	1.004	78.481
0.70	0.27	0.085	0.754	0.113	1.022	86,867
0.75	0.29	0.091	0.797	0.115	1.035	94.612
0.80	0.30	0.097	0.842	0.116	1.041	101.417
0.85	0.32	0.103	0.892	0.115	1.038	106.913
0.90	0.34	0.108	0.950	0.113	1.026	110.582
0.95	0.36	0.112	1.023	0.109	1.000	111.486
1.00	0.38	0.114	1.195	0.095	0.913	103.755




TUBAZIONE P22-P41 De400 - p max

Portata Q (I/s)	13.25
Pendenza tubazione i _t	0.0200
Coefficiente di scabrezza ks (m1%/s)	80
D tubazione (m)	0.3804
grado di riempimento y/D	0.15
velocità corrente v (m/s)	1.224

Grado di	Tirante	Area bagnata	Perimetro	Raggio	Velocità	Portata (l/s)
riempimento	(m)	(N1 ²)	baganto (m)	idraulico (m)	(m/s)	PULLALA (115)
0.000	0.00	0.000	0.000	0.000	0.000	0.000
0.05	0.02	0.002	0.172	0.012	0.606	1.286
0.10	0.04	0.006	0.245	0.024	0.946	5.593
0.15	0.06	0.011	0.303	0.035	1.218	13.022
0.20	80.0	0.016	0.353	0.046	1.450	23.460
0.25	0.10	0.022	0.398	0.056	1.652	36,697
0.30	0.11	0.029	0.441	0.065	1.829	52.462
0.35	0.13	0.035	0.482	0.074	1.987	70.440
0.40	0.15	0.042	0.521	0.081	2.127	90.277
0.45	0.17	0.050	0.559	0.089	2.250	111.586
0.50	0.19	0.057	0.598	0.095	2.357	133.947
0.55	0.21	0.064	0.636	0.101	2.450	156.908
0.60	0.23	0.071	0.674	0.106	2.528	179.982
0.65	0.25	0.078	0.713	0.110	2.591	202.637
0.70	0.27	0.085	0.754	0.113	2.640	224.291
0.75	0.29	0.091	0.797	0.115	2.672	244.287
0.80	0.30	0.097	0.842	0.116	2.687	261.857
0.85	0.32	0.103	0.892	0.115	2.681	276,049
0.90	0.34	0.108	0.950	0.113	2.650	285.521
0.95	0.36	0.112	1.023	0.109	2.581	287.856
1.00	0.38	0.114	1.195	0.095	2.357	267.894

2. RETE ACQUE BIANCHE

Il progetto prevede il dimensionamento e la verifica della rete di smaltimento delle acque meteoriche relative alla realizzazione di due nuovi PEC in località Valmadonna nel Comune di Alessandria, indicati in seguito come "PEC Via Castellino" e "PEC via Costanza".

In particolare gli interventi di regimazione delle acque interessano solamente il "PEC Via Castellino".

Il dimensionamento della rete di drenaggio è stato effettuato con il metodo razionale per il calcolo dei deflussi meteorici applicato alla curva di possibilità climatica relativa alla Stazione pluviografica di Alessandria i cui dati sono stati elaborati dall'Autorità di Bacino e pubblicati dalla Regione Piemonte nella D.G.R. 15/07/2002 n. 45-6656.

La rete di smaltimento delle acque meteoriche del piazzale, progettata per tempi di ritorno dei fenomeni temporaleschi TR = 10 anni, è costituita caditoie prefabbricate in CLS di dimensioni interne 30 cm x 30 cm con griglie in ghisa D400 posate sul lato sinistro di via Castellino, fognoli di scarico delle caditoie in PVC De 200 mm e da trincee drenanti in terra a sezione trapezia di base 30 e 50 cm ed altezza pari a 30 e 50 cm realizzate sia in destra che in sinistra di Via Castellino.

In particolare in destra si prevedono 4 trincee drenanti a sezione trapezia di base 30 cm ed altezza 30 cm per uno sviluppo complessivo di 318 m.

In sinistra si prevedono 2 trincee drenanti a sezione trapezia di base 30 cm ed altezza 30 cm per uno sviluppo complessivo di 109 m e tre a sezione trapezia di base 50 cm ed altezza 50 cm per uno sviluppo complessivo di 166 m. Si faccia riferimento alla tavola dedicata.

2.1. Dimensionamento e verifiche rete di smaltimento acque bianche

Il dimensionamento della rete acque meteoriche è stato effettuato basandosi su un tempo di ritorno del fenomeno temporalesco di riferimento pari a TR = 10 anni; tale dato consente di ottenere un buon rapporto costi/benefici anche in considerazione dell'aumento progressivo delle intensità di pioggia per fenomeni di breve durata.

2.1.1. Analisi idrologica e stima dei deflussi nella rete in progetto

La previsione quantitativa delle piogge nell'area di interesse è stata realizzata attraverso la determinazione della curva di possibilità pluviometrica individuante la relazione che intercorre tra il tempo di pioggia (t) e l'altezza d'acqua piovuta (h), secondo la seguente formulazione:

$$h(t) = a \cdot t^n$$

nella quale i termini a ed n sono parametri dipendenti dal tempo di ritorno specificato. La D.G.R. 15/07/2002 n. 45-6656 riporta l'elenco dei valori di tali parametri per i tempi di ritorno 20, 100, 200 e 500 anni, per una serie di stazioni meteorologiche di riferimento. Nel caso in oggetto è stata scelta la stazione meteorologica di Alessandria per la quale sono riportati i seguenti valori di riferimento:

TR (anni)	a	n
20	32.80	0.290
100	42.18	0.282
200	46.23	0.279
500	51.57	0.276

Tabella 3: Parametri idrologici "a" e "n" della stazione pluviografica di Alessandria

Il tempo di ritorno considerato per il dimensionamento dei sistemi di drenaggio delle acque meteoriche è pari a 10 anni. Non essendo compreso fra i tempi di ritorno presenti nella D.G.R., i valori di a ed n sono stati valutati per estrapolazione dai dati disponibili. Questi ultimi sono stati inseriti in un diagramma semilogaritmico (cfr. Figura 3 e Figura 4) ed interpolati con curva logaritmica best-fitting di cui viene riportata l'equazione.

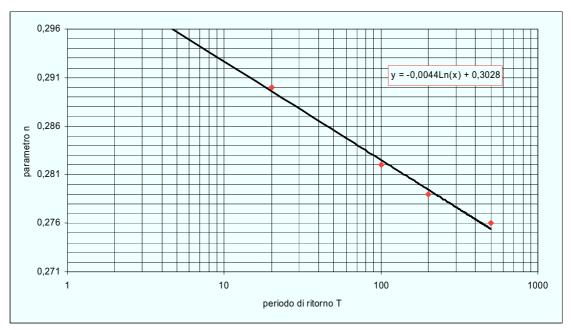


Figura 3 - regressione parametro n per TR = 10 anni

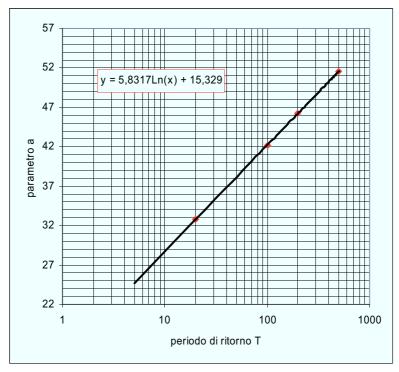


Figura 4 - regressione parametro a per TR = 10 anni

Il prolungamento della curva individua i valori cercati, che risultano essere: a = 28.76 ed n = 0.2927.

2.1.2. Coefficiente di deflusso superfici di scolo

La riduzione dell'afflusso (ϕ) alle rete si considera dovuta al grado di impermeabilità delle superfici e al ritardo degli afflussi dovuto ad ogni tipo di ostacolo. Tali parametri variano a seconda della densità delle costruzioni e della topografia della zona.

Nella tabella seguente vengono riportati i valori del coefficiente di deflusso per alcuni tipi di superfici.

Tipi di superficie	φ
Tetti metallici	0,95
Tetti a tegole	0,90
Tetti piani con rivestimento in calcestruzzo	$0,70 \div 0,80$
Tetti piani ricoperti di terra	0,30÷0,40
Pavimentazioni asfaltate	0,85÷0,90
Pavimentazioni in pietra	$0,80 \div 0,85$
Massicciata in strade ordinarie	0,40÷0,80
Strade in terra	0,40÷0,60
Zone con ghiaia non compressa	0,15÷0,25
Giardini	0÷0,25
Boschi	0,10÷0,30
Parti centrali di città completamente edificate	0,70÷0,90

Quartieri con pochi spazi liberi	0,50÷0,70
Quartieri con fabbricati radi	0,25÷0,50
Tratti scoperti	0,10÷0,30
Giardini e cimiteri	0,05÷0,25
Terreni coltivati	0,20÷0,60

Tabella 4: Coefficienti di deflusso tipici per aree a diversa destinazione d'uso

Se esistono bacini tributari sarà:

$$\varphi = \frac{\Sigma \varphi A i}{\Sigma A i}$$

I coefficienti di deflusso adottati, riguardante le viabilità, i parcheggi e le scarpate sono pari rispettivamente a 0.90, 0.50 e 0.30.

2.1.3. Determinazione della portata massima transitante nella rete fognaria

La massima portata meteorica defluente nella tubazione fognaria è valutata col metodo razionale, il quale fornisce la seguente espressione:

$$Q_{\text{max}} = \frac{\varphi \cdot S \cdot h \cdot 106}{3600 \cdot T_c}$$

con:

 $S = \text{superficie del sottobacino } [km^2];$

h = altezza di pioggia [m];

 T_c = tempo di corrivazione/concentrazione [ore];

 φ = coefficiente medio di deflusso.

Tale metodo si basa sulle seguenti ipotesi:

- gocce di pioggia cadute contemporaneamente in luoghi diversi del bacino, arrivano alla sezione di chiusura in tempi diversi;
- il contributo di ogni singolo punto del bacino alla portata di piena è direttamente proporzionale all'intensità di pioggia caduta in quel punto per il tempo necessario al raggiungimento della sezione di chiusura da parte del contributo stesso;
- tale tempo è caratteristico di ogni singolo punto e rimane costante per tutta la durata del fenomeno pluviometrico.

Ne consegue che le portate massime si ottengono per tempi di pioggia non inferiori al tempo di corrivazione/concentrazione determinati alla sezione di chiusura in esame.

2.1.4. Dimensionamento trincee drenanti

La determinazione del volume di massimo invaso Wm viene eseguita mediante metodo cinematico (trattazione analitica di Alfonsi e Orsi, 1987) con la seguente formulazione:

$$W_{m} = A \cdot \varphi \cdot a \cdot \theta_{w}^{n} + \frac{T_{c} \cdot Q_{u}^{2} \cdot \vartheta_{w}^{1-n}}{A \cdot \varphi \cdot a} - Q_{u} \cdot \vartheta_{w} - Q_{u} \cdot T_{c}$$

con θ w, durata critica per la vasca, ricavabile dalla relazione:

$$n \cdot A \cdot \varphi \cdot a \cdot \theta_w^{n-1} + \frac{(1-n) \cdot T_c \cdot Q_u^2 \cdot \vartheta_w^{-n}}{A \cdot \varphi \cdot a} - Q_u = 0$$

dove i simboli assumono il seguente significato:

- n = parametro della curva di possibilità pluviometrica;
- φ = coefficiente di deflusso;
- A = superficie drenante (m^2) ;
- a = parametro della curva di possibilità pluviometrica (mm/h^n) ;
- T_c = tempo di corrivazione del bacino (h);
- $\theta_{\rm w}$ = durata critica che massimizza il volume di pioggia (h);
- Q_u = portata in uscita (m³/s).

Il tempo di corrivazione assunto è pari a 300 secondi.

Il calcolo del volume di invaso del fosso è stato determinato per lunghezza unitaria di carreggiata stradale, come differenza tra volume affluito e volume infiltrato nel tempo, utilizzando la trattazione riportata in precedenza. La portata in uscita, indicata come portata di infiltrazione, è determinata con la relazione di Vedernikov:

$$Q_{inf} = k \cdot (B + 3 \cdot H) \cdot L$$

dove:

- K rappresenta la permeabilità assunta pari a 10⁻⁶ m/s;
- S rappresenta la pendenza delle sponde pari a 45°;
- b rappresenta la larghezza alla base del fosso pari a 0.30 e 0.50 m;
- H rappresenta il tirante idrico nel fosso drenante pari a 030 o 0.50 m;
- B rappresenta l'occupazione trasversale fosso pari a 0.90 e 1.50 m;
- L rappresenta la lunghezza del fosso.

Si riportano i fogli di calcolo delle trincee drenanti previste.

TRINCEA DRENANTE F1

Tirante idrico in fosso drenante h (m) =	0.3	
Base fosso drenante (m) =	0.30	
Altezza fosso drenante (m) =	0.30	
Occupazione fosso a piano campagna (m) =	1.30	
Occupazione trasversale acqua in fosso B (m) =	0.90	
Lunghezza fosso drenante L (m) =	109.00	
Volume di immagazzinamento fosso (m³) =	19.32	
Permeabilità terreno K (m/s) =	0.000001	
Portata di filtrazione (Vedernikov) Q _{II} (I/s) =	0.0001962	

$$\begin{aligned} W_E &= S \cdot \varphi \cdot a \cdot \vartheta_w^n + \frac{t_c \cdot Q_U^2 \cdot \vartheta_w^{1-n}}{S \cdot \varphi \cdot a} - Q_U \cdot \vartheta_w - Q_U \cdot t_c \\ &con \ \vartheta_w \text{, durata criticaper l'invaso, ricavabile dalla relazione seguente} \\ &n \cdot S \cdot \varphi \cdot a \cdot \vartheta_w^{n-1} + \frac{(1-n) \cdot t_c \cdot Q_U^2 \cdot \vartheta_w^{-n}}{S \cdot \varphi \cdot a} - Q_U = 0 \end{aligned}$$

Tempo di corrivazione t _c (ore) =	0.083
Coefficiente di deflusso aree impermeabili (adim.) =	0.9
Coefficiente di deflusso parcheggi (adim.) =	0.5
Coefficiente di deflusso scarpate e terreno (adim.) =	0.3
Superficie drenante impermeabile (m²) =	401.695
Superficie drenante parcheggi (m²) =	212.5
Superficie drenante scarpate e terreno (m²) =	0
Coefficiente di deflusso medio (adim.) =	0.76
Superficie drenante totale (m²) =	614.195
Parametro curva climatica "a" =	28.76
Parametro curva climatica "n" =	0.2927
Portata uscente Q _U (m³/s) =	0.0001962

Tempo di pioggia $\vartheta_{\mathbf{w}}$ (min)	Tempo di pioggia ϑա (ore)	Convergenza ϑ _w	Volume invaso (m³)
300	5.00	0.00015458	17.958
320	5.33	0.000138937	18.133
340	5.67	0.000124879	18.291
360	6.00	0.000112166	18.433
380	6.33	0.000100604	18.560

400	6.67	9.00364E-05	18.674
420	7.00	8.0334E-05	18.776
440	7.33	7.13896E-05	18.866
460	7.67	6.31134E-05	18.946
480	8.00	5.54295E-05	19.017
500	8.33	4.82735E-05	19.079
520	8.67	4.159E-05	19.132
540	9.00	3.53314E-05	19.178
560	9.33	2.94564E-05	19.216
580	9.67	2.39291E-05	19.248
600	10.00	1.87178E-05	19.273
620	10.33	1.37949E-05	19.292
640	10.67	9.13576E-06	19.306
660	11.00	4.71877E-06	19.314
680	11.33	5.24516E-07	19.316
700	11.67	-3.4643E-06	19.314
720	12.00	-7.2632E-06	19.307
740	12.33	-1.08861E-05	19.296
760	12.67	-1.43457E-05	19.281
780	13.00	-1.76532E-05	19.261
800	13.33	-2.08191E-05	19.238
820	13.67	-2.38526E-05	19.211
840	14.00	-2.67625E-05	19.180
860	14.33	-2.95564E-05	19.146
880	14.67	-3.22416E-05	19.108
900	15.00	-3.48246E-05	19.068
920	15.33	-3.73114E-05	19.024
940	15.67	-3.97076E-05	18.978
960	16.00	-4.20183E-05	18.928
980	16.33	-4.42483E-05	18.876
1000	16.67	-4.64019E-05	18.821

Tirante idrico in fosso drenante h (m) =	0.3
Base fosso drenante (m) =	0.30
Altezza fosso drenante (m) =	0.30
Occupazione fosso a piano campagna (m) =	1.30
Occupazione trasversale acqua in fosso B (m) =	0.90
Lunghezza fosso drenante L (m) =	198.00
Volume di immagazzinamento fosso (m³) =	22.10
Permeabilità terreno K (m/s) =	0.000001
Portata di filtrazione (Vedernikov) Q _{IJ} (I/s) =	0.0003564

$$\begin{aligned} W_E &= S \cdot \varphi \cdot a \cdot \vartheta_w^n + \frac{t_c \cdot Q_U^2 \cdot \vartheta_w^{1-n}}{S \cdot \varphi \cdot a} - Q_U \cdot \vartheta_w - Q_U \cdot t_c \\ &con \ \vartheta_w \text{, durata critica per l'invaso, ricavabile dalla relazione seguente} \\ &n \cdot S \cdot \varphi \cdot a \cdot \vartheta_w^{\text{n-1}} + \frac{(1-n) \cdot t_c \cdot Q_U^2 \cdot \vartheta_w^{-n}}{S \cdot \varphi \cdot a} - Q_U = 0 \end{aligned}$$

Tempo di corrivazione t _c (ore) =	0.083
Coefficiente di deflusso aree impermeabili (adim.) =	0.9
Coefficiente di deflusso parcheggi (adim.) =	0.5
Coefficiente di deflusso scarpate e terreno (adim.) =	0.3
Superficie drenante impermeabile (m²) =	681.695
Superficie drenante parcheggi (m²) =	0
Superficie drenante scarpate e terreno (m²) =	0
Coefficiente di deflusso medio (adim.) =	0.90
Superficie drenante totale (m²) =	681.695
Parametro curva climatica "a" =	28.76
Parametro curva climatica "n" =	0.2927
Portata uscente Q _U (m³/s) =	0.0003564

Tempo di pioggia ϑ_{w} (min)	Tempo di pioggia $\vartheta_{\mathbf{w}}$ (ore)	Convergenza $\vartheta_{\mathbf{w}}$	Volume invaso (m³)
100	1.67	0.00064452	18.245
120	2.00	0.000523512	18.941
140	2.33	0.000432693	19.511
160	2.67	0.000361639	19.984
180	3.00	0.000304297	20.381
200	3.33	0.000256897	20.716
220	3.67	0.000216956	20.998
240	4.00	0.00018277	21.236

260	4.33	0.000153125	21.436
280	4.67	0.000127135	21.603
300	5.00	0.000104133	21.740
320	5.33	8.36076E-05	21.852
340	5.67	6.51618E-05	21.940
360	6.00	4.84799E-05	22.007
380	6.33	3.33086E-05	22.054
400	6.67	1.94419E-05	22.085
420	7.00	6.71044E-06	22.099
440	7.33	-5.02649E-06	22.099
460	7.67	-1.58867E-05	22.086
480	8.00	-2.59697E-05	22.059
500	8.33	-3.53601E-05	22.022
520	8.67	-4.41306E-05	21.973
540	9.00	-5.23435E-05	21.914
560	9.33	-6.0053E-05	21.845
580	9.67	-6.73065E-05	21.768
600	10.00	-7.41452E-05	21.682
620	10.33	-8.06056E-05	21.588
640	10.67	-8.67198E-05	21.487
660	11.00	-9.25163E-05	21.379

Tirante idrico in fosso drenante h (m) =	0.5
Base fosso drenante (m) =	0.50
Altezza fosso drenante (m) =	0.50
Occupazione fosso a piano campagna (m) =	1.50
Occupazione trasversale acqua in fosso B (m) =	1.50
Lunghezza fosso drenante L (m) =	83.00
Volume di immagazzinamento fosso (m³) =	39.89
Permeabilità terreno K (m/s) =	0.000001
Portata di filtrazione (Vedernikov) Q _{II} (I/s) =	0.0002490

$$\begin{aligned} W_E &= S \cdot \varphi \cdot a \cdot \vartheta_w^n + \frac{t_c \cdot Q_U^2 \cdot \vartheta_w^{1-n}}{S \cdot \varphi \cdot a} - Q_U \cdot \vartheta_w - Q_U \cdot t_c \\ &con \ \vartheta_w \text{, durata criticaper l'invaso, ricavabile dalla relazione seguente} \\ &n \cdot S \cdot \varphi \cdot a \cdot \vartheta_w^{\text{n-1}} + \frac{(1-n) \cdot t_c \cdot Q_U^2 \cdot \vartheta_w^{-n}}{S \cdot \varphi \cdot a} - Q_U = 0 \end{aligned}$$

Tempo di corrivazione t _c (ore) =	0.083
Coefficiente di deflusso aree impermeabili (adim.) =	0.9
Coefficiente di deflusso parcheggi (adim.) =	0.5
Coefficiente di deflusso scarpate e terreno (adim.) =	0.3
Superficie drenante impermeabile (m²) =	280
Superficie drenante parcheggi (m²) =	0
Superficie drenante scarpate e terreno (m²) =	1950
Coefficiente di deflusso medio (adim.) =	0.38
Superficie drenante totale (m²) =	2230
Parametro curva climatica "a" =	28.76
Parametro curva climatica "n" =	0.2927
Portata uscente Q _U (m³/s) =	0.0002490

Tempo di pioggia ϑ_{w} (min)	Tempo di pioggia $\vartheta_{\mathbf{w}}$ (ore)	Convergenza $\vartheta_{\mathbf{w}}$	Volume invaso (m³)
500	8.33	0.000188151	37.231
520	8.67	0.000176195	37.449
540	9.00	0.000165	37.653
560	9.33	0.000154491	37.844
580	9.67	0.000144603	38.023
600	10.00	0.000135282	38.191
620	10.33	0.000126475	38.348
640	10.67	0.000118141	38.494

660	11.00	0.00011024	38.631
680	11.33	0.000102738	38.758
700	11.67	9.56028E-05	38.877
720	12.00	8.88075E-05	38.987
740	12.33	8.2327E-05	39.089
760	12.67	7.61388E-05	39.184
780	13.00	7.02225E-05	39.272
800	13.33	6.45597E-05	39.352
820	13.67	5.91335E-05	39.426
840	14.00	5.39286E-05	39.493
860	14.33	4.89311E-05	39.555
880	14.67	4.41281E-05	39.610
900	15.00	3.95079E-05	39.660
920	15.33	3.50598E-05	39.705
940	15.67	3.07737E-05	39.744
960	16.00	2.66406E-05	39.778
980	16.33	2.26518E-05	39.807
1000	16.67	1.87997E-05	39.832
1020	17.00	1.50769E-05	39.852
1040	17.33	1.14767E-05	39.868
1060	17.67	7.9927E-06	39.879
1080	18.00	4.61919E-06	39.886
1100	18.33	1.35066E-06	39.889
1120	18.67	-1.81796E-06	39.889
1140	19.00	-4.89143E-06	39.885
1160	19.33	-7.87421E-06	39.877
1180	19.67	-1.07705E-05	39.865
1200	20.00	-1.35841E-05	39.850
1220	20.33	-1.63188E-05	39.832
1240	20.67	-1.89781E-05	39.811
1260	21.00	-2.15651E-05	39.786
1280	21.33	-2.40829E-05	39.758
1300	21.67	-2.65345E-05	39.728
1320	22.00	-2.89225E-05	39.694
1340	22.33	-3.12495E-05	39.658
1360	22.67	-3.3518E-05	39.619

Tirante idrico in fosso drenante h (m) =	0.5
Base fosso drenante (m) =	0.50
Altezza fosso drenante (m) =	0.50
Occupazione fosso a piano campagna (m) =	1.50
Occupazione trasversale acqua in fosso B (m) =	1.50
Lunghezza fosso drenante L (m) =	83.00
Volume di immagazzinamento fosso (m³) =	41.66
Permeabilità terreno K (m/s) =	0.000001
Portata di filtrazione (Vedernikov) Q _{II} (I/s) =	0.0002490

$$\begin{aligned} W_E &= S \cdot \varphi \cdot a \cdot \vartheta_w^n + \frac{t_c \cdot Q_U^2 \cdot \vartheta_w^{1-n}}{S \cdot \varphi \cdot a} - Q_U \cdot \vartheta_w - Q_U \cdot t_c \\ &con \ \vartheta_w \text{, durata critica per l'invaso, ricavabile dalla relazione seguente} \\ &n \cdot S \cdot \varphi \cdot a \cdot \vartheta_w^{n-1} + \frac{\left(1-n\right) \cdot t_c \cdot Q_U^2 \cdot \vartheta_w^{-n}}{S \cdot \varphi \cdot a} - Q_U = 0 \end{aligned}$$

Tempo di corrivazione t _c (ore) =	0.083
Coefficiente di deflusso aree impermeabili (adim.) =	0.9
Coefficiente di deflusso parcheggi (adim.) =	0.5
Coefficiente di deflusso scarpate e terreno (adim.) =	0.3
Superficie drenante impermeabile (m²) =	490
Superficie drenante parcheggi (m²) =	0
Superficie drenante scarpate e terreno (m²) =	1407
Coefficiente di deflusso medio (adim.) =	0.45
Superficie drenante totale (m²) =	1897
Parametro curva climatica "a" =	28.76
Parametro curva climatica "n" =	0.2927
Portata uscente Q _U (m³/s) =	0.0002490

Tempo di pioggia $\vartheta_{\mathbf{w}}$ (min)	Tempo di pioggia $\vartheta_{\mathbf{w}}$ (ore)	Convergenza $\vartheta_{\mathbf{w}}$	Volume invaso (m³)
500	8.33	0.000201765	38.627
520	8.67	0.000189436	38.861
540	9.00	0.000177892	39.081
560	9.33	0.000167055	39.288
580	9.67	0.00015686	39.482
600	10.00	0.000147247	39.664
620	10.33	0.000138167	39.835
640	10.67	0.000129573	39.995

660	11.00	0.000121426	40.145
680	11.33	0.00011369	40.286
700	11.67	0.000106332	40.417
720	12.00	9.93251E-05	40.540
740	12.33	9.26426E-05	40.655
760	12.67	8.62616E-05	40.762
780	13.00	8.01609E-05	40.862
800	13.33	7.43216E-05	40.954
820	13.67	6.87263E-05	41.040
840	14.00	6.33592E-05	41.119
860	14.33	5.8206E-05	41.191
880	14.67	5.32533E-05	41.258
900	15.00	4.84892E-05	41.319
920	15.33	4.39025E-05	41.374
940	15.67	3.94829E-05	41.423
960	16.00	3.52209E-05	41.468
980	16.33	3.11079E-05	41.507
1000	16.67	2.71357E-05	41.542
1020	17.00	2.32969E-05	41.572
1040	17.33	1.95845E-05	41.598
1060	17.67	1.5992E-05	41.619
1080	18.00	1.25133E-05	41.635
1100	18.33	9.14297E-06	41.648
1120	18.67	5.87562E-06	41.657
1140	19.00	2.70638E-06	41.662
1160	19.33	-3.69339E-07	41.663
1180	19.67	-3.35584E-06	41.660
1200	20.00	-6.25716E-06	41.654
1220	20.33	-9.07708E-06	41.645
1240	20.67	-1.18192E-05	41.632
1260	21.00	-1.44868E-05	41.616
1280	21.33	-1.70831E-05	41.597
1300	21.67	-1.9611E-05	41.574
1320	22.00	-2.20735E-05	41.549
1340	22.33	-2.4473E-05	41.521
1360	22.67	-2.68122E-05	41.490
1380	23.00	-2.90933E-05	41.456

Tirante idrico in fosso drenante h (m) =	0.3
Base fosso drenante (m) =	0.30
Altezza fosso drenante (m) =	0.30
Occupazione fosso a piano campagna (m) =	1.30
Occupazione trasversale acqua in fosso B (m) =	0.90
Lunghezza fosso drenante L (m) =	120.00
Volume di immagazzinamento fosso (m³) =	20.96
Permeabilità terreno K (m/s) =	0.000001
Portata di filtrazione (<i>Vedernikov</i>) Q _U (I/s) =	0.0002160

$$\begin{aligned} W_E &= S \cdot \varphi \cdot a \cdot \vartheta_w^n + \frac{t_c \cdot Q_U^2 \cdot \vartheta_w^{1-n}}{S \cdot \varphi \cdot a} - Q_U \cdot \vartheta_w - Q_U \cdot t_c \\ &con \, \vartheta_w \text{, durata criticaper l'invaso, ricavabile dalla relazione seguente} \\ &n \cdot S \cdot \varphi \cdot a \cdot \vartheta_w^{n-1} + \frac{(1-n) \cdot t_c \cdot Q_U^2 \cdot \vartheta_w^{-n}}{S \cdot \varphi \cdot a} - Q_U = 0 \end{aligned}$$

Tempo di corrivazione t _c (ore) =	0.083
Coefficiente di deflusso aree impermeabili (adim.) =	0.9
Coefficiente di deflusso parcheggi (adim.) =	0.5
Coefficiente di deflusso scarpate e terreno (adim.) =	0.3
Superficie drenante impermeabile (m²) =	490
Superficie drenante parcheggi (m²) =	137.5
Superficie drenante scarpate e terreno (m²) =	0
Coefficiente di deflusso medio (adim.) =	0.81
Superficie drenante totale (m²) =	627.5
Parametro curva climatica "a" =	28.76
Parametro curva climatica "n" =	0.2927
Portata uscente Q _U (m³/s) =	0.0002160

Tempo di pioggia ϑ_{w} (min)	Tempo di pioggia $\vartheta_{\mathbf{w}}$ (ore)	Convergenza $\vartheta_{\mathbf{w}}$	Volume invaso (m³)
300	5.00	0.000166265	19.529
320	5.33	0.000149218	19.718
340	5.67	0.000133899	19.887
360	6.00	0.000120045	20.039
380	6.33	0.000107445	20.175
400	6.67	9.59289E-05	20.296
420	7.00	8.53557E-05	20.404
440	7.33	7.56086E-05	20.500

460	7.67	6.65896E-05	20.585
480	8.00	5.82162E-05	20.660
500	8.33	5.04179E-05	20.724
520	8.67	4.31346E-05	20.780
540	9.00	3.63144E-05	20.827
560	9.33	2.99122E-05	20.866
580	9.67	2.38887E-05	20.898
600	10.00	1.82098E-05	20.923
620	10.33	1.2845E-05	20.941
640	10.67	7.76781E-06	20.953
660	11.00	2.95441E-06	20.959
680	11.33	-1.61626E-06	20.959
700	11.67	-5.96306E-06	20.955
720	12.00	-1.01029E-05	20.944
740	12.33	-1.4051E-05	20.930
760	12.67	-1.7821E-05	20.910
780	13.00	-2.14254E-05	20.886
800	13.33	-2.48754E-05	20.858
820	13.67	-2.81812E-05	20.826
840	14.00	-3.13522E-05	20.790
860	14.33	-3.43969E-05	20.750
880	14.67	-3.7323E-05	20.706
900	15.00	-4.01378E-05	20.659
920	15.33	-4.28478E-05	20.609
940	15.67	-4.54591E-05	20.556
960	16.00	-4.79772E-05	20.500

2.1.5. Dimensionamento passo caditoie

I pozzetti caditoia utilizzati presentano dimensioni interne 30 cm x 30 cm e sono dotati di griglia in ghisa sferoidale D400 secondo UNI EN124. Per definire l'interasse di progetto delle caditoie, sono state calcolate, mediante metodo razionale, le portate generate da un tratto di piattaforma; la lunghezza della falda di drenaggio è pari all'interasse di progetto. Il tirante generato da tale lama d'acqua, unitamente al perimetro idraulicamente attivo, sono utilizzati come input per la determinazione della portata smaltibile dalla caditoia stessa. La relazione utilizzata è la seguente (ASCE e WEF, 1992):

$$Q = 1.66 \cdot P \cdot h^{3/2}$$

dove:

P = perimetro idraulicamente attivo,

h = tirante.

Si riportano i dimensionamenti relativi al passo delle caditoie.

Verifica Maglia Caditoie - passo 15 m p long. Min	
ANALISI IDROLOGICA	
Carreggiata	Alessandria
Pendenza longitudinale (adim.)	0.004
Pendenza trasversale strada (adim.)	0.025
Larghezza banchina (m)	0.1
Larghezza pozzanghera in carreggiata (m)	0.00
Larghezza pozzanghera su asfalto (m)	0.1
Battente contro marciapiede (m)	0.003
Area bagnata (m²)	0.0001
scabrezza cunetta (m¹/3/s)	80
Portata smaltibile in banchina (I/s)	0.01
Interasse bocche di scarico (m)	15.00
Larghezza falda di pertinenza (m)	4.25
v particella liquida ipotizzata (m/s)	0.346
coefficiente di deflusso Φ	0.628
a (mm)	28.76
n (-)	0.2927
Superficie servita (ha)	0.0199
L asta principale (m)	15
T di concentrazione	
tempo di rete $Tr = L/v$ (s)	43.327
Ta tempo d'accesso (s)	300.000
Tc = Tr + ta (s)	343.327
Tc = Tr + ta (h)	0.095
portata massima di deflusso Q max (mc/s)	0.0053
portata massima di deflusso Q max (l/s)	5.26
Battente effettivo dalla portata di deflusso (m)	0.028
Larghezza effettiva pozzanghera (m)	1.102
Area bagnata effettiva (m²)	0.0152
v particella liquida reale (m/s)	0.346
Coefficiente udometrico (I/s/m²)	0.026
ANALISI IDRAULICA CADITOIA	
Battente contro marciapiede (m)	0.028
Lunghezza caditoia (m)	0.30
Larghezza caditoia (m)	0.30
Invito alla caditoia (m)	0.02
n barre longitudinali della griglia	5
spessore barre longitudinali della griglia (m)	0.005
Portata smaltita dalla caditoia (I/s)	19.80
ANALISI IDRAULICA - Tubazione pluviale	
Invito al di sopra del pluviale (m)	0.10
altezza massima battente sul pluviale (m)	0.148
C _q sotto battente	0.6
diametro pluviale (mm)	189
Portata sotto battente (l/s)	28.64

Verifica Maglia Caditoie - passo 15 m p long. max ANALISI IDROLOGICA	
Pendenza longitudinale (adim.)	0.0615
Pendenza trasversale strada (adim.)	0.025
Larghezza banchina (m)	0.1
Larghezza pozzanghera in carreggiata (m)	0.00
Larghezza pozzanghera su asfalto (m)	0.1
Battente contro marciapiede (m)	0.003
Area bagnata (m²)	0.0001
scabrezza cunetta (m¹/3/s)	80
Portata smaltibile in banchina (l/s)	0.03
Interasse bocche di scarico (m)	15.00
Larghezza falda di pertinenza (m)	4.25
v particella liquida ipotizzata (m/s)	0.979
coefficiente di deflusso Φ	0.628
a (mm)	28.76
n (-)	0.2927
Superficie servita (ha)	0.0199
L asta principale (m)	15
T di concentrazione	
tempo di rete Tr = L/v (s)	15.317
Ta tempo d'accesso (s)	300.000
Tc = Tr + ta (s)	315.317
Tc = Tr + ta (h)	0.088
portata massima di deflusso Q max (mc/s)	0.0056
portata massima di deflusso Q max (l/s)	5.58
Battente effettivo dalla portata di deflusso (m)	0.017
Larghezza effettiva pozzanghera (m)	0.675
Area bagnata effettiva (m²)	0.0057
v particella liquida reale (m/s)	0.979
Coefficiente udometrico (I/s/m²)	0.028
ANALISI IDRAULICA CADITOIA	
Battente contro marciapiede (m)	0.017
Lunghezza caditoia (m)	0.30
Larghezza caditoia (m)	0.30
Invito alla caditoia (m)	0.02
n barre longitudinali della griglia	5
spessore barre longitudinali della griglia (m)	0.005
Portata smaltita dalla caditoia (I/s)	13.52
ANALISI IDRAULICA - Tubazione pluviale	,
Invito al di sopra del pluviale (m)	0.10
altezza massima battente sul pluviale (m)	0.137
C _q sotto battente	0.6
diametro pluviale (mm)	189
Portata sotto battente (I/s)	27.59

2.2. Materiali usati

Le tubazioni dei fognoli di scarico delle caditoie in PVC assicurano bassa rugosità, buona resistenza alle sollecitazioni interne e maggior maneggevoli in fase di posa.

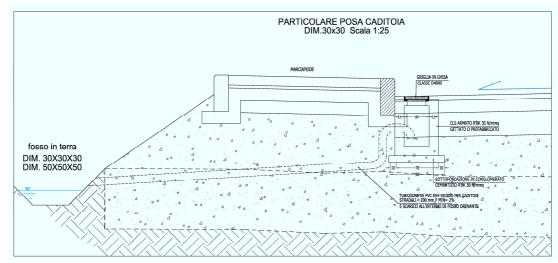


Figura 5 – Particolare posa caditoia

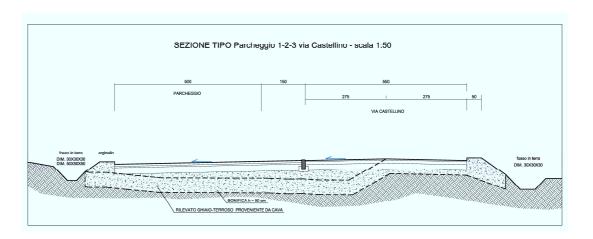


Figura 6 – Particolare smaltimento acque bianche